You Gotta Know These Rocket Scientists
- Robert Goddard was an early explorer of the theory and practice of launching rockets. His work provided the foundation for modern rocketry: in particular, gimballed engines (engines where the exhaust nozzles can change direction allowing the rocket to be steered), fuel pumps, steering with vanes, and gyroscopic stabilization. His seminal monograph on the subject was 1919’s . The next year, he put forward a concept for a rocket launch to the moon that was widely ridiculed in the press as being unrealistic. Goddard is the namesake of the NASA Goddard Spaceflight Center in Maryland.
- Konstantin Tsiolkovsky’s interest in science manifested first through his science fiction writings, but he gained more notoriety for his eponymous . The Tsiolkovsky equation, as published in 1903’s Exploration of Outer Space by Means of Rocket Device, relates a rocket’s speed with its mass, the speed of its exhaust, and the exhaust’s mass (an application of Newton’s laws of motion.) The equation is also connected with the idea of specific impulse, a measure of a rocket’s efficiency. Tsiolkovsky also published theoretical studies on the capabilities of multi-stage, liquid-fueled engines, gyroscopes, and escape velocities.
- Hermann Oberth imagined at the age of 14 a recoil rocket, which could propel itself by exhausting gas from its base. He also lends his name to the Oberth effect, a phenomenon by which rockets operate more efficiently when moving at higher speeds, and formulated the idea behind multiple-stage rocketry. Oberth also mentored many German rocket engineers through the Verein für Raumschiffahrt (Spaceflight Society), whose formation was inspired partially by Oberth’s writing.
- Wernher von Braun was at one time a student of Oberth in the Spaceflight Society. Von Braun is best-known for leading Nazi Germany’s development and construction of the V-2 rocket (literally, “vengeance weapon”), which wreaked destruction on southern England during World War II. After World War II, he was recruited to the US as part of Operation Paperclip, and proposed to launch a space station carrying a nuclear arsenal (though he hedged the concept as “particularly dreadful”). He presided over Mercury-Redstone development as Director of NASA’s newly-opened Marshall Spaceflight Center, which produced the rockets used in the Mercury spaceflights, and the Saturn V rocket used to launch the Apollo spacecraft.
- Hellmuth Walter designed the Starthilfe (takeoff assist) rocket propulsion units for the Messerschmidt Me 163 and the vertical-takeoff Bachem Ba 349 aircrafts, used by the German Luftwaffe in World War II. He also was awarded a patent in 1925 for suggesting that a catalyzed decomposition of hydrogen peroxide could provide oxygen for combustion.
- Sergei Korolev, known until his death by the pseudonym “Chief Designer”, headed design and construction for the Soviet long-range ballistic missile program, as well as the R-7 ICBM program. This work urged similar innovations in the U.S. Earlier in his career, Korolev designed a rocket-powered glider, though he was imprisoned and forced into slave labor during the Great Purge. In the 1950s, he personally oversaw Sputnik and Sputnik 2, and he returned to the R-7, modifying it for lunar insertion of robotic probes. His final years were spent devising soft-landing methods for manned lunar missions.
- Theodore von Kármán was a fluid dynamicist by training. As a graduate student at Göttingen, he described the so-called Kármán vortex street (a form of turbulence in flow going past a cylinder, which is responsible for driving the vibration or “singing” of power lines) and went on to provide the theoretical basis for the idea of turbulent flows. He contributed to the construction of the wind tunnel at the Guggenheim Aeronautical Laboratory, which eventually became the Jet Propulsion Laboratory. He also formed the company Aerojet to develop short-takeoff aircraft technologies. The Kármán line is the accepted boundary between the Earth’s atmosphere and outer space, and the Kármán ogive is the shape of the cone of rockets curving into the main body, which minimizes drag during rocket burn.
- Gene Kranz was a trained aeronautical engineer and pilot. He is best known for his Flight Directorship during the Mercury and Apollo projects. He presided over a departure from NASA’s traditional incremental testing structure, in favor of a more aggressive, manned campaign (“all-up testing”). As part of the Apollo 13 “white team,” Kranz and his associates engineered the free-return trajectory and human-factors management that brought the Apollo 13 crew back safely after a near-fatal spacecraft anomaly.
- Homer Hickam was inspired by seeing Sputnik fly overhead to study rocketry in his early teens. From his coal-company town in West Virginia, he and his rocket club, , designed modest-sized rockets and won the propulsion category of the 1960 National Science Fair. After serving in Vietnam, Hickam worked at the US Army Missile Command in Germany and Huntsville. Later, he moved to NASA, where he specialized in astronaut training. He trained crews for the Hubble Space Telescope’s deployment extra-vehicular activity (EVA) and the first two servicing missions.
This article was contributed by former ÎÞÓǶÌÊÓƵ writer Zachary Pace.